## The Youth's Assistant in Theoretic and Practical Arithmetic: Designed for the Use of Schools in the United States |

### From inside the book

Results 1-5 of 5

Page 4

By this table it will be seen that any number , however large , after dividing it into

as one consisting of three figures only ; for the same names , ( hundreds , tens ...

By this table it will be seen that any number , however large , after dividing it into

**periods**, and knowing the names of the**period**: , can be read with the same easeas one consisting of three figures only ; for the same names , ( hundreds , tens ...

Page 110

From what was shown ( 264 ) , wc know the root must consist of two fig . ures , in

as much as 529 consists of two

we need only write the square of the figure denoting tens under second

From what was shown ( 264 ) , wc know the root must consist of two fig . ures , in

as much as 529 consists of two

**periods**. ... significant figures below biundreds ,we need only write the square of the figure denoting tens under second

**period**. Page 111

Distinguish the given numbers into

number in the left hand

division , and this will be the highest figure in the root required . Subtract the ...

Distinguish the given numbers into

**periods**; find the root of the greatest squarenumber in the left hand

**period**, and place the root in the manner of a quotient indivision , and this will be the highest figure in the root required . Subtract the ...

Page 114

Having distinguished the given number into

the greatest cube in the left hand

Subtract the cube from the left hand

next ...

Having distinguished the given number into

**periods**, of three figures each , findthe greatest cube in the left hand

**period**, and place its root in the quotient .Subtract the cube from the left hand

**period**, and to the remainder bring down thenext ...

Page 116

Find the first figure of the root by trial , subtract its power from the first

to the remainder bring down the first figure in the next

dividend . Involve the root already found to the next inferior power to that which ...

Find the first figure of the root by trial , subtract its power from the first

**period**, andto the remainder bring down the first figure in the next

**period**, and call these thedividend . Involve the root already found to the next inferior power to that which ...

### What people are saying - Write a review

We haven't found any reviews in the usual places.

### Other editions - View all

### Common terms and phrases

acres added Addition amount ANALYSIS answer body bush bushels called cash cents Change ciphers column common compound contains cost cube cubic decimal denominator denoted diameter difference distance divide dividend division divisor dollars dolls equal evidently example expressed factors feet figures foot four fraction gain gallon give given greater half Hence hundred hundredths inches interest least left hand length less mean measure method miles months multiply names operation payment period person pound principal proceed proportion quantity QUESTIONS FOR PRACTICE quotient ratio receive Reduce remainder right hand rods root rule share shillings side simple solid square square root subtract supposed tens tenths third tion units vulgar weight whole worth write written yard

### Popular passages

Page 82 - Multiply each payment by its term of credit, and divide the sum of the products by the sum of the payments ; the quotient will be the average term of credit.

Page 89 - The greatest common divisor of two or more numbers, is the greatest number which will divide them without a remainder. Thus 6 is the greatest common divisor of 12, 18, 24, and 30.

Page 118 - PROBLEM II. The first term, the last term, and the number of terms given, to find the common difference. RULE. — Divide the difference of the extremes by the number of terms less 1 , and the quotient will be the common diffcrenct.

Page 111 - Subtract the square number from the left hand period, and to the remainder bring down the next period for a dividend. III. Double the root already found for a divisor ; seek how many times the divisor is contained in the dividend...

Page 94 - It will be seen that we multiply the denominator of the dividend by the numerator of the divisor for the denominator of the quotient, and the numerator of the dividend by the denominator of the divisor for the numerator of the quotient.

Page 120 - Add together the most convenient indices to make an index less by 1 than the number expressing the place of the term sought. 3. Multiply the terms of the geometrical series together belonging to those indices, and make the product a dividend. 4. Raise...

Page 115 - Multiply the divisor, thus augmented, by the last figure of the root, and subtract the product from the dividend, and to the remainder bring down the next period for a new dividend.

Page 31 - RULE. Divide as in whole numbers, and from the right hand of the quotient point off as many places for decimals as the decimal places in the dividend exceed those in the divisor.

Page 2 - Los números cardinales 0: zero 1: one 2: two 3: three 4: four 5: five 6: six 7: seven 8: eight 9: nine 10: ten 11: eleven 12: twelve 13: thirteen 14: fourteen 15: fifteen 16: sixteen 17: seventeen 18: eighteen 19: nineteen 20: twenty...

Page 93 - Multiply the numerators together for a new numerator, and the denominators together for a new denominator.