Page images
PDF
EPUB

PREFACE.

The present is the fourth volume of the “POPULAR LECTTRER,” new series. It contains 30 lectures, extending to 384 pages, the average cost being one penny each. The subjects treated comprise Education, Natural History, Language, Mechanics, Industry, Cotton, Pictures, Travels, Biography, Mining, Science, Poetry, Music, &c.

Amongst the authors of these lectures will be found the names of Lord Brougham; the Rev. Dr. Hook; Dr. Latham; the Dean of Carlisle ; Thomas Bazley, Esq., M.P.; Leo. H. Grindon, Esq. ; R. W. Emerson, Esq.; the Rev. Marmaduke Miller; George Dawson, Esq., M.A. ; His Royal Highness the Prince Consort; E. W. Binney, Esq., F.R.S., F.G.S. ; the Right Hon. Sir James Stephen ; and other well-known names in literature and science.

The volume will be found to contain a large fund of valuable and interesting information, of the kind most serviceable to students, and the members of educational institutions generally. A “revival” is taking place in the art of lecturing, and our readers shall have the benefit of it. We would strongly urge young men who listen to lectures to study shorthand. Phonography is the system in which these lectures have been reported by

THE EDITOR.

CONTENTS.

Sir Isaac Newton, by Lord Brougham ............

Austrians and Hungarians, by Dr. Latham .......

National Education, by Thomas Bazley, Esq., M.P.

Bernard the Monk, by the Rev. C. Williams

Natural History, by Leo. I. Grindon, Esq. .........

Mind and Body: their Mutual Relation, by Mr. W.J. Cox, M.R.C.S... 65

On Writing, by Mr. S. Draper .........

............ 89

Social Position of the Working Classes, by T. Dickins, Esq., J.P. ....

Thoughts on Life, by R. W. Emerson, Esq. ........................

The Working Man, by the Rev. Marmaduke Miller....

Mechanical Trades of Great Britain, by Mr. Geo. Gent........

Liberal Training, by the Rev. Dr. Hook .....

Wonders of the Ocean, by the Dean of Carlisle .......

Glaciers, by Edward Hall, Esq. .....

Cotton, by Thomas Bazley, Esq., M.P. ........... ........

Do. (concluded) .................................

.....................

A Picture and its Painter, by Joseph Johnson .....

Origin of Language, by Leo. H. Grindon, Esq......

A Tour in the United States, by H. Ashworth, Esq. ..............

Andrew Marvel, by Geo. Dawson, Esq., M.A. .........

Coal Gases and Mining Lamps, by E. W. Binney, Esq., F.R.8.........289

Burns, as a Poet, by James Finlayson ......

The British Association, by the Prince Consort ......

Clocks, by Mr. W. H. Bailey ......

............

Music for the People, by the Rev. Dr. Hook .......... ........

Milton's "Comus," by the Right Hon. Sir James Stephen ..........353

Immortality of the Soul, by Mr. C. Haworth ......................367

Printing, by the Rev. James Malcolmson .........................

le

SIR ISAAC NEWTON.

BY

LORD BROUGHAM.

(An Oration spoken at the Inauguration of the National Statue of Sir

Isaac Newton, at Grantham, Lincolnshire.]

TO RECORD the names and preserve the memory of those whose great achievements in science, in arts, or in arms, have conferred benefits and lustre upon our kind, has in all ages been regarded as a duty and felt as a gratification by wise and reflecting men, The desire of inspiring an ambition to emulate such examples, generally mingles itself with these sentiments; but they cease not to operate even in the rare instances of transcendant merit, where matchless genius excludes all possibility of imitation, and nothing remains but wonder in those who contemplate its triumphs at a distance that forbids all attempts to approach. We are this day assembled to commemorate him of whom the consent of nations has declared, that he is chargeable with nothing like a follower's exaggeration or local partiality, who pronounces the name of Newton as that of the greatest genius ever bestowed by the bounty of Providence, for instructing mankind on the frame of the universe, and the laws by which it is governed : “Qui genus humanum ingenio superavit, et omnes

Restinxit; stellas exortus uti ætherius sol.”- (Luc.) "In genius who surpassed mankind as far

As does the mid-day sun the midnight star.”—(DRYDEN.) But, though scaling these lofty heights be hopeless, yet there is some use and much gratification in contemplating by what steps he ascended. Tracing his course of action may help others to gain the lower eminences lying within their reach, while admiration excited and curiosity satisfied are frames of mind both wholesome and pleasing. Nothing new, it is true, can be given in narrative, hardly anything in reflection, less still perhaps in comment orillustration; but it is well to assemble in one view various parts of the vast subject, with the surrounding circumstances, whether accideutal or intrinsic, and to mark in passing the misconceptions raised by individual ignorance or national prejudice which the historian of science occasionally finds crossing his path.

The remark is common and is obvious, that the genius of Newton did not manifest itself at a very early age. His faculties were not, like those of some great and many ordinary individuals, precociously developed. Among the former, Clairant stands preeminent, who at 19 years of age presented to the Royal Academy a memoir of great originality upon a difficult subject in the higher geometry, and at 18 published his great work on curves of double curvature, composed during the two preceding years. Pascal, too, at 16, wrote an excellent treatise on conic sections. That Newton cannot be ranked in this respect with those extraordinary persons, is owing to the accidents which prevented him from entering upon mathematical study before his 18th year; and then a much greater marvel was wrought than even the Clairants and the Pascals displayed. His earliest history is involved in some obscurity, and the most celebrated of men has, in this particular, been compared to the most celebrated of rivers (the Nile), as if the course of both in its feebler state had been concealed from mortal eyes.

We have it, however, well ascertained that within four years, between the age of 18 and 22, he had begun to study mathematic science, and had taken his place among its greatest masters; learnt for the first

time the elements of geometry and analysis, and discovered a calculus which entirely changed the face of the science, effecting a complete revolution in that and in every branch of philosophy connected with it. Before 1661 he had not read Euclid; in 1665 he had committed to writing the method of fluxions. At 25 years of age he had discovered the law of gravitation, and laid the foundation of celestial dynamies, the science created by him. Before ten years had elapsed he added to his discoveries that of the fundamental properties of light. So brilliant a course of discovery in so short a time, changing and reconstructing analytical, astronomical, and optical science, almost defies belief. The statement can only beslemed possible by an appeal to the incontestible evidence that proves it strictly true. By a rare felicity these doctrines gained the universal assent of inankind as soon as they were clearly understood; and their originality has never been seriously called in qnestion. Some doubts having been raised respecting his inventing the calculus-doubts raised in consequence of his so long withholding the pub. lication of his method—no sooner was the inquiry instituted than the evidence produced proved so decisive, that all men in all countries acknowledged him to have been by several years the earliest inventor, and Leibnitz, at the utmost, the first publisher; the only questions raised being, first, whether or not he had borrowed from Newton; and next, whether, as Second inventor, he could have any merit at all ; both which questions have long since been decided in favour of Newton. But undeniable though it be that Newton made the great steps of this progress, and made them without any anticipation or participation by others, it is equally certain that there had been approaches in former times by preceding philosophers to the same discoveries. Cavalleri, hy his Geometry of Indivisibles (1635), Roberval, by his Method of Tangents (1367), had both given solutions

« PreviousContinue »