Handbook of Mixture AnalysisSylvia Fruhwirth-Schnatter, Gilles Celeux, Christian P. Robert Mixture models have been around for over 150 years, and they are found in many branches of statistical modelling, as a versatile and multifaceted tool. They can be applied to a wide range of data: univariate or multivariate, continuous or categorical, cross-sectional, time series, networks, and much more. Mixture analysis is a very active research topic in statistics and machine learning, with new developments in methodology and applications taking place all the time. The Handbook of Mixture Analysis is a very timely publication, presenting a broad overview of the methods and applications of this important field of research. It covers a wide array of topics, including the EM algorithm, Bayesian mixture models, model-based clustering, high-dimensional data, hidden Markov models, and applications in finance, genomics, and astronomy. Features:
The Handbook of Mixture Analysis is targeted at graduate students and young researchers new to the field. It will also be an important reference for anyone working in this field, whether they are developing new methodology, or applying the models to real scientific problems. |
Other editions - View all
Handbook of Mixture Analysis Sylvia Fruhwirth-Schnatter,Gilles Celeux,Christian P. Robert Limited preview - 2019 |
Handbook of Mixture Analysis Sylvia Frühwirth-Schnatter,Gilles Celeux,Christian P. Robert No preview available - 2020 |
Handbook of Mixture Analysis Sylvia Frühwirth-Schnatter,Gilles Celeux,Christian P. Robert No preview available - 2019 |